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A B S T R A C T

Introduction: Linear registration to a standard space is one of the major steps in processing and analyzing magnetic
resonance images (MRIs) of the brain. Here we present an overview of linear stereotaxic MRI registration and
compare the performance of 5 publicly available and extensively used linear registration techniques in medical
image analysis.
Methods: A set of 9693 T1-weighted MR images were obtained for testing from 4 datasets: ADNI, PREVENT-AD,
PPMI, and HCP, two of which have multi-center and multi-scanner data and three of which have longitudinal
data. Each individual native image was linearly registered to the MNI ICBM152 average template using five
versions of MRITOTAL from MINC tools, FLIRT from FSL, two versions of Elastix, spm_affreg from SPM, and ANTs
linear registration techniques. Quality control (QC) images were generated from the registered volumes and
viewed by an expert rater to assess the quality of the registrations. The QC image contained 60 sub-images (20 of
each of axial, sagittal, and coronal views at different levels throughout the brain) overlaid with contours of the
ICBM152 template, enabling the expert rater to label the registration as acceptable or unacceptable. The per-
formance of the registration techniques was then compared across different datasets. In addition, the effect of
image noise, intensity non-uniformity, age, head size, and atrophy on the performance of the techniques was
investigated by comparing differences between age, scaling factor, ventricle volume, brain volume, and white
matter hyperintensity (WMH) volumes between passed and failed cases for each method.
Results: The average registration failure rate among all datasets was 27.41%, 27.14%, 12.74%, 13.03%, 0.44% for
the five versions of MRITOTAL techniques, 8.87% for ANTs, 11.11% for FSL, 12.35% for Elastix Affine, 24.40%
for Elastix Similarity, and 30.66% for SPM. There were significant effects of signal to noise ratio, image intensity
non-uniformity estimates, as well as age, head size, and atrophy related changes between passed and failed
registrations.
Conclusion: Our experiments show that the Revised BestLinReg had the best performance among the evaluated
registration techniques while all techniques performed worse for images with higher levels of noise and non-
uniformity as well as atrophy related changes.
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Introduction

Linear MR image registration, i.e. geometrically aligning two 3D
images (source and target) from the same modality, different modal-
ities, visits or subjects is a fundamental task in many aspects of medical
image analysis. Image registration is used in many different areas of
medicine such as multi-modality fusion, functional brain mapping,
image guided surgery, and characterization of normal versus abnormal
shape and variations in population studies (Maintz and Viergever,
1998). Registration of brain images to a standard stereotaxic coordinate
system enables the use of anatomical priors for tissue classification and
segmentation. This article reviews five publicly available linear regis-
tration techniques for MR brain images, and compares their perfor-
mance in registering native un-preprocessed images to an average
stereotaxic template, using a large number of subject data from 4
different studies.

A registration problem can generally be decomposed into 2 major
independent components: the registration paradigm, and the optimiza-
tion procedure. The registration paradigm may include landmark-based
registration, segmentation-based registration, and voxel-property-based
registration (Maintz and Viergever, 1998). Here we focus on voxel-wise
registration methods which operate directly on the image grey in-
tensity values, without prior data reduction by the user (as in landmark
registration) or by segmentation. The standard framework for voxel-wise
intensity-based registration involves optimizing a similarity metric or
cost function that reflects the similarity between pairs of voxel intensities
in the two images. This similarity metric provides a quantifiable measure
that reflects how well the two images are aligned as the transformation
parameters are changed. In case of 3D linear registrations, the trans-
formation parameters generally include 3 translations, 3 rotations, and 3
scaling parameters in each direction. Under the assumption that the
transformation parameters that optimize the similarity function would
lead to the optimal registration, the registration problem is transformed
into the problem of optimizing a similarity metric, which is often the
cross correlation or mutual information between the two images.
Registration failures may occur either when the initial assumption fails
and the cost function is not ideal (i.e. returning minimum values for poor
registrations) or more often when the optimization technique gets stuck
in local minima and fails to find the global optimum of the cost function.
To address this issue, many techniques attempt iterative multi-resolution
registrations, starting by estimating an initial transformation at a lower
resolution (therefore reducing the number of local optima) and refining
the registration at higher resolutions (Elsen et al., 1993; Pluim et al.,
2003). Another advantage of partially solving the problem at a lower
resolution is that the algorithms generally require fewer computa-
tions/iterations. As a result, multi-resolution solutions also tend to
reduce the computation time.

A major question concerning a computed registration transformation
entails the accuracy. Since a gold standard for inter-subject registration is
lacking in practice, the answer is generally non-trivial. One can identify
homologous landmarks, but this is biased to the choice of landmarks and
not feasible when testing thousands of datasets. One can estimate a
measure of accuracy by using synthetic data, but the results might not be
generalizable to practical applications, which are usually more chal-
lenging. These difficulties are generally caused by:
Table 1
MRI acquisition parameters for ADNI, PPMI, HCP, and PREVENT-AD datasets.

Dataset ADNI PP

Slice thickness (mm) 1.2 1–
No. of slices 160–170 M
Field of view (cm2) 256� 256 25
Scan matrix (cm2) 256� 256 25
Repetition time (ms) 2300–3000 5–
Echo time (ms) 2.9–3.5 2–
Pulse sequence MPRAGE, GR M
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1) Intensity range and distribution differences between source and
target images caused by differences in scanners as well as acquisition
sequences, leading to various levels of noise and intensity in-
homogeneity. This can also give rise to slightly different tissue
contrasts.

2) Anatomical differences between source and target images, due to
inter-subject variability, differences in age, surgical procedures or
different atrophy patterns caused by neurodegenerative diseases.

3) Presence of pathology, such as tumors, stroke lesions, white matter
hyperintensities (WMHs), infarcts, and microbleeds which can lead to
drastic changes in the local intensities.

There is a widespread need to quantify registration accuracy. How-
ever, due to the lack of an absolute gold standard for inter-subject
registration, such a task is impossible in practice (Maintz and Vierg-
ever, 1998). Another issue that hinders giving any statistics on a certain
registration method is the incomparability of accuracy experiments done
using data obtained from particular scanners and sequences since the
method's implementation may be specific to that data. Finally, the
inconsistency between the definition of accuracy terms between different
studies also makes comparisons difficult.

Here we have compared the performance of five different publicly
available and widely used linear registration techniques to map data into
stereotaxic space using multi-site and multi-scanner T1-weighted (T1w)
MRI data of 9693 scans obtained from 4 different large studies. The scans
contain 1.5T and 3T data from healthy individuals, subjects with mild
cognitive impairment, Alzheimer’s disease, and Parkinson’s disease,
aged between 25 and 95 years. The registration accuracy of the different
linear registration techniques has been verified bymanual quality control
across the entire sample set to enable meaningful and reliable compari-
son of the performance of different techniques. In addition, passed and
failed registrations for each technique are compared in terms of image
signal to noise ratio, intensity non-uniformity, age, as well as the head
size, ventricle and brain volume, and WMH volume.

Methods

Data

This section describes the study and scanner information for each of
the four datasets. Table 1 summarizes the acquisition parameters for each
study. Table 2 shows the number of scans used from each study.

1) ADNI: The Alzheimer’s Disease Neuroimaging Initiative (ADNI), is a
multi-center and multi-scanner study with the aim of defining the
progression of Alzheimer’s disease (AD). ADNI was launched in 2003
as a public-private partnership, led by Michael W. Weiner, MD. The
primary goal of ADNI was to test whether MRI and other biomarkers
and clinical assessments can be combined to measure the disease
progression (Mueller et al., 2005) (www.adni-info.org). ADNI data
includes 1.5T and 3T scans of normal controls, individuals with mild
cognitive impairment or AD patients aged 55 years or older. The data
has been acquired with different models of GE Medical Systems,
Philips Medical systems, and SIEMENS scanners over 59 acquisition
sites.
MI HCP PREVENT-AD

1.5 0.7 1
in 160 210 176
6�Min160 224� 224 256� 256
6�Min160 224� 224 256� 256
11 2400 2300
6 2.14 2.98
PRAGE, SPGR MPRAGE MPRAGE

http://www.adni-info.org


Table 2
Number of scans used from each of ADNI, PPMI, HCP, and PREVENT-AD
datasets.

Dataset ADNI
1.5T

ADNI
3T

PPMI
1.5T

PPMI
3T

HCP PREVENT-
AD

No. of
scans

3489 3056 222 778 897 1251

Table 3
Definitions of the similarity metrics that are commonly used for linear registra-
tion (Jenkinson et al., 2002). X;Y denote source and target images represented as
a set of intensities. HðX;YÞ ¼ �P

i;j
pijlogðpijÞ is the entropy function, where pij

represents the joint probability estimated using the joint intensity histogram.
HðXÞ ; HðYÞ are the marginal entropy functions. Yk is the intensity of image Y at
voxels where the intensity of X is in the kth intensity bin. nk is the number of
elements in Yk: N ¼ P

k
nk.

Cost Function Definition

Normalized Correlation
P

X:YffiffiffiffiffiffiffiffiffiffiP
X2

p ffiffiffiffiffiffiffiffiffiffiP
Y2

p

Least Squares P ðX � YÞ2
Mutual Information HðX;YÞ� HðXÞ � HðYÞ
Normalized Mutual Information HðX;YÞ

HðXÞþHðYÞ
Correlation Ratio 1

VarðYÞ
P

k

nk
N VarðYkÞ
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2) PPMI: The Parkinson Progression Marker Initiative (PPMI) is a pub-
lic–private partnership funded by the Michael J Fox Foundation for
Parkinson's Research and funding partners (www.ppmi-info.org/
fundingpartners). PPMI is an observational, multi-center and multi-
scanner longitudinal study designed to identify PD biomarkers
(Marek et al., 2011). PPMI data includes 1.5T and 3T scans of normal
controls and de novo Parkinson’s patients aged 30 years or older. The
data has been acquired with different models of GE Medical Systems,
Philips Medical systems, and SIEMENS scanners over 33 sites in 11
countries.

3) HCP: The Human Connectome Project (HCP) is a project to construct
a map of structural and functional connectivity in vivo within and
across individuals as an effort to characterize brain connectivity and
function and their variability. HCP data includes young healthy adults
aged between 25 and 30 years (Van Essen et al., 2012). All T1w HCP
images have been scanned using a 32-channel head coil and a
SIEMENS 3T scanner.

4) PREVENT-AD: The PREVENT-AD (Pre-symptomatic Evaluation of
Novel or Experimental Treatments for Alzheimer’s Disease, http://
www.prevent-alzheimer.ca) program follows healthy individuals
age 55 or older with a parental history of AD dementia (Trem-
blay-Mercier et al., 2014). Data used in preparation of this article
were obtained from the PREVENT-AD program data release 3.0. All
the T1-weighted images have been scanned using a single 3T
SIEMENS MAGNETOM TrioTim syngo MR scanner (version B17).
Registration methods

The image registration problem can be defined as finding a trans-
formation that maps the target or subject image to the source or reference
template image, where both images are 3D volumes with potentially
different voxel sizes and dimensions. For the purposes of this paper, the
reference template image is the symmetric MNI ICBM152 unbiased non-
linear T1w average brain (Fonov et al., 2009, 2011) (http://nist.mni.
mcgill.ca/?p¼904). Registration is defined by a similarity metric (cost
function) that determines the distance between the transformed target
image and the source image. Table 3 shows the mathematical functions
of the commonly used similarity metrics in the literature (Jenkinson
et al., 2002).

This section reviews the registration techniques used in this study.
1) MRITOTAL: MRITOTAL is a hierarchical multi-scale 3D registra-

tion technique developed as part of the ANIMAL package (Collins et al.,
1994) for the purpose of aligning a given MRI volume to an average MRI
template aligned with the Talairach stereotaxic coordinate system
(Talairach and Tournoux, 1988). MRITOTAL uses voxel-wise image in-
tensity and 3D gradient magnitude as features and cross-correlation as
similarity measure. The image is convolved with a 3D isotropic Gaussian
kernel. The standard deviation of the kernel is used as a measure of the
spatial scale and the full width at half-maximum (FWHM) of the Gaussian
is used as a measure of the resolution (blurring). The registration starts at
lower resolution (very blurry data) and is refined at each stage by using
less blurred images. When smoothing to work at lower resolutions, values
outside the field of view were assumed to be zero.

The initial BestLinReg algorithm is a 5-stage hierarchical technique
based on MRITOTAL that was developed by Robbins et al. as part of the
MINC tools for cortical surface analysis (Robbins, 2004; Robbins et al.,
2004). Similar to MRITOTAL, it starts the optimization with highly
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blurred images (σ1¼ 16mm) in the first stage and a sampling step size
(SampS1) of 8mm and a simplex optimization algorithm with a simplex
size (SimpS1) of 32mm. The tolerance parameter (Tol) for the cost
function for the initial stage is set to 0.01. In the second and third stages,
less blurred images (σ2¼ 8mm, σ3¼ 4mm) are used as well as smaller
step sizes and simplex size (SampS2-3¼ 4mm, SimpS2¼ 16, SimpS3¼ 8)
and higher tolerance (Tol¼ 0.004). In the last two stages, it uses the
gradient magnitude of the blurred image with different levels of blurring
(σ4¼ 8mm, σ5¼ 4mm) and the same sampling step size
(SampS4-5¼ 4mm) and tolerance (Tol¼ 0.004) and smaller simplex sizes
(SimpS4¼ 4mm, SimpS5¼ 2mm). The Revised BestLinReg is another
version of BestLinReg with different parameter configurations that has
been developed as part of the Cortical Thickness and Surface Analysis
(CIVET 2.1) pipeline (Lepage et al., 2017). Revised BestLinReg only es-
timates an initial translation by calculating the centers of mass in the
images in the first stage (3 translations). It then runs the second and third
stages of the registration with 6 and 7 parameters (3 translations, 3 ro-
tations, plus 1 scaling parameter) and the last two stages with full
9-parameter registrations. The optimization parameters are also modi-
fied to adapt to these changes (σ2-3¼ 8mm, σ4¼ 4mm, σ5¼ 2mm,
SimpS2-3¼ 16mm, SimpS4¼ 8mm, SimpS5¼ 4mm, Tol2-4¼ 0.0001,
Tol5¼ 0.0005). The source code for all versions are available at https://
github.com/bic-mni. Fig. 1 summarizes the registration steps in each
version. In this experiment, both normalized mutual information (MI)
and cross correlation (XCorr) cost functions were tested for BestLinReg.
For Revised BestLinReg, only normalized mutual information was used.

2) FSL FLIRT: FMRIB's Linear Image Registration Tool (FLIRT) is a
multi-start, multi-resolution registration tool (Jenkinson et al., 2002,
2012). The registration starts with a large-scale search at 8mm resolution
(e.g. applying a set of initial rotations), followed by a series of multi-start
local optimizations at 4mm resolution, based on the best candidates of
the previous stage. The registration is refined in the last stage using a
sequence of local optimizations at 2mm and 1mm resolutions. In addi-
tion to the multi-resolution approach, FLIRT uses modified cost func-
tions, where the voxels at the edge of the common overlapping field of
view are down-weighted. Fuzzy binning techniques for histogram esti-
mation are also used in an attempt to reduce the number of local minima.
The available cost functions include normalized cross correlation, mutual
information, and correlation ratio. In this experiment, the default cost
function (correlation ratio) was used.

3) Elastix: Elastix is a registration tool (Klein et al., 2010) built on
top of Insight Toolkit (ITK) (Johnson et al., 2015; Yoo et al., 2002).
Elastix has a parametric and modular framework, where the user can
configure different components of the registration in a parameter text
file. The following linear transformation models are supported by
Elastix: 3-parameter translation, 6-parameter rigid registration (3
translations and 3 rotations), 7-parameter similarity (rigid plus isotopic
scaling), and 12-parameter affine (3 translations, 3 rotations, 3 scales,

http://www.ppmi-info.org
http://www.prevent-alzheimer.ca
http://www.prevent-alzheimer.ca
http://nist.mni.mcgill.ca/?p=904
http://nist.mni.mcgill.ca/?p=904
http://nist.mni.mcgill.ca/?p=904
https://github.com/bic-mni
https://github.com/bic-mni


Fig. 1. Registration steps for MRITOTAL, BestLinReg and Revised BestLinReg methods.
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and 3 sheers). The available cost functions include mean squared dif-
ference, normalized correlation, (normalized) mutual information,
multi-feature α-mutual information, κ-statistic, and bending energy
penalty term. The user can also linearly combine various cost functions.
The available optimizers include gradient descent, quasi-Newton,
nonlinear conjugate gradient descent, Kiefer-Wolfowitz, Robbin-
s-Monro, adaptive stochastic gradient descent, and evolutionary strat-
egy. For sampling, Elastix supports the use of all voxels, a subset of
voxels selected on a uniform grid, and random sampling of voxels on
and off the voxel grid (at non-voxel locations). For computing the cost
function, Elastix supports several interpolation techniques including
nearest neighbour, linear and Nth-order B-Spline interpolation. In this
experiment, Mattes mutual information, adaptive stochastic gradient
descent optimizer and B-spline interpolation were used in the image
pyramid schedule with 3 levels of resolution (downsampling at 8, 4, and
2 voxels respectively). This configuration was selected since it has been
widely used and works well for both mono-modality and
multi-modality registrations (http://elastix.bigr.nl/wiki/index.php/
Parameter_file_database).

4) SPM: spm_affreg is an affine registration tool from Statistical
Parametric Mapping software package (SPM12) (Ashburner et al.,
1997; Ogden, 1997; Penny et al., 2011) which performs affine regis-
tration using a least squares technique. A maximum a posteriori
Bayesian approach is adopted, where the spatial transformation is
estimated using prior knowledge of the normal variability of brain
size, orientation and position in the scanner. The a priori distribution
of the parameters have been previously determined from affine
transformations estimated from T1w brain images of 51 normal adults
(Ashburner et al., 1997). The optimization is performed by iteratively
solving a linear approximation of the sum of squared differences be-
tween the two images using Taylor’s theorem. Images are resampled at
the desired coordinates using trilinear interpolation of the voxel lat-
tice. In this experiment, the default settings were used which include
inter-subject registration regularisation, and 5 mm spacing between
sample points. In addition, before running spm_affreg, the images were
smoothed by applying a three-dimensional Gaussian filter with FWHM
of 12mm as common practice. Note that the SPM12 image processing
194
pipeline uses a different affine alignment strategy by default.
5) ANTs: ANTs linear registration also uses a multi-resolution hi-

erarchical method, starting by aligning the centers (3 translations),
aligning the orientations (3 translations þ 3 rotations), accounting for
the scaling factors (3 translations þ 3 rotations þ 1 scaling), and
finally, a fully affine transformation (Avants et al., 2011, 2014). The
similarity metric can be defined separately for each step. In this
experiment, we have used Mattes mutual information metric for all
steps since it has been shown to produce the best results for affine
registration (Avants et al., 2011). The default stochastic gradient
descent is used for optimizing the cost function. The optimization
stops either when the slope of change in the energy function is
negative or very small or when the maximum number of iterations is
reached (Avants et al., 2014). Other parameters were selected based
on guidelines from ANTs documentation.

The selected images from each dataset were registered to the MNI
ICBM152 average template using the abovementioned methods and
settings with a 9-parameter registration for MRITOTAL and FSL, a 7-
parameter and a 12-parameter registration for Elastix since it does not
support 9-parameter registrations, and a 12-parameter affine regis-
tration for SPM and ANTs since they do not support 9-parameter
registrations. The scripts containing the details and parameters used
for all experiments are available at https://bitbucket.org/bicnist/bic-
nist-registration.

Quality control

If a technique failed to produce an output, the outcome of the regis-
tration was considered as a failure. For the rest of the registrations that
produced an output, the obtained transformations were used to transform
the images from the native space to template space, resampling it in the
template voxel space. To create a QC image, 60 images were extracted
from axial, sagittal, and coronal slices (20 each) throughout the resam-
pled volume and the contours of the ICBM152 template were overlaid on
each slice image. The slices were selected to cover the brain from bottom
to top (axial), left to right (sagittal), and back to front (coronal) for each
brain. These 60 images were then concatenated into a single large

http://elastix.bigr.nl/wiki/index.php/Parameter_file_database
http://elastix.bigr.nl/wiki/index.php/Parameter_file_database
https://bitbucket.org/bicnist/bic-nist-registration
https://bitbucket.org/bicnist/bic-nist-registration


Fig. 2. Sample image created for assessing the quality of the registrations. Axial, sagittal, and coronal slices showing contours of the average template brain overlaid
on the registered image of a single subject in the template space.
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composite image that was viewed by the human expert to assess the
registration and label the outcome as acceptable or failure. Fig. 2 shows
an example of a QC image for a passed registration.

The human expert started by assessing the alignment of the images on
sagittal and then coronal views. If these images were well aligned, axial
slices were assessed to evaluate whether rotation in the axial plane
(generally where the highest variability was found) had been correctly
estimated. The anatomical landmarks that were used to assess the
alignment included the outline of the brain, central sulcus, cingulate
sulcus, and parieto-occipital fissure. Since the ventricles are larger in
aging and AD brains, the outline of the ventricles was not used as a
landmark in the QC. The QC procedure took approximately 30 hours per
method for the entire dataset. The human rater was blind to both the
registration technique and the dataset information.

The intra-rater Dice similarity and accuracy were 0.96 and 93%,
respectively, assessed by manually assessing 1000 randomly selected
images a second time. Fig. 3 shows examples of six registrations that were
labeled as unacceptable by the human rater due to incorrect estimates of
translation (Fig. 3a), translation and scaling (Fig. 3b), scaling in all di-
rections (Fig. 3c), scaling in axial plane (Fig. 3 d, Fig. 3e), and rotation
(Fig. 3f). Fig. 4 shows one axial, sagittal, and coronal slice from each
image in Fig. 3 in greater detail.
Effect of noise and image intensity non-uniformity on registration quality

The effects of signal to noise ratio (SNR) and image intensity non-
uniformity on registration quality were investigated using permutation
tests (N¼ 10,000) between the estimates for passed and failed cases. An
estimate of the SNR was obtained using a robust Rician noise estimation
technique (Coup�e et al., 2010). As a surrogate of the amount of intensity
inhomogeneity, an estimate of the standard deviation (STD) of intensity
non-uniformity was obtained from the N3 non-uniformity correction
method (Sled et al., 1998).
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Effect of age, head size, atrophy and WMH load on registration quality

The effects of age, head size, atrophy and WMH load on registration
quality were also investigated. While age is available directly from the
different imaging databases, estimates of head size, brain atrophy and
WMH load are required. Surrogates of these values were obtained by
processing each MRI volume through our standard pipeline (https://
github.com/BIC-MNI/bic-pipelines/blob/master/bin/standard_pipeline.
pl) (Aubert-Broche et al., 2013). Image denoising (Coupe et al., 2008),
intensity non-uniformity correction (Sled et al., 1998), and image intensity
normalization into range (0–100) were performed. After preprocessing, all
images were first linearly (using a 9-parameter rigid registration) and then
nonlinearly registered to an average template as part of the ANIMAL
software (Collins and Evans, 1997; Collins et al., 1994). The scaling
parameter (here referred to as scale factor) used to scale individual scans to
the standard template was used as a surrogate of head size. The brain tissue
as well as the ventricles were segmented as part of the ANIMAL software.
Normalized brain volume and ventricle volume were used as surrogates of
brain atrophy in the permutation tests below.

The WMH load of subjects in the ADNI, PPMI, and PREVENT-AD
datasets was estimated by segmenting the WMH lesions using a previ-
ously validated fully automated technique (Dadar et al., 2017a, 2017b,
2018). The WMH segmentation tool is based on a Random Forests clas-
sifier that is trained to detect WMHs in multi-center and multi-scanner
datasets, using either T1-weighted and FLAIR or T1-weighterd and
T2-weighted/PD images. Since HCP subjects were young healthy in-
dividuals and visual assessment showed that they did not have significant
amounts of WMHs, they were excluded from the WMH comparisons.

The quality of all segmentations was verified by visual assessment and
failed segmentation cases were discarded (N¼ 48). The effect of age,
structure volumes and WMH loads on registration quality was evaluated
using permutation tests (N¼ 10,000) between the estimates for passed
and failed registrations.

https://github.com/BIC-MNI/bic-pipelines/blob/master/bin/standard_pipeline.pl
https://github.com/BIC-MNI/bic-pipelines/blob/master/bin/standard_pipeline.pl
https://github.com/BIC-MNI/bic-pipelines/blob/master/bin/standard_pipeline.pl


Fig. 3. Examples of failed registrations. Incorrect estimates of a) translation, b) translation and scaling, c) scaling in all directions, d, e) scaling in axial plane, and
f) rotation.
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Results

Overall performance

Table 4 compares the performance of different techniques in terms of
percentage of registration failures across different datasets. Performance
ranged from 53.83% success in ADNI 1.5T with MRITOTAL to 100%
success with PPMI 1.5T and Revised BestLinReg. The Revised BestLinReg
method had the best overall performance across all datasets (failure
rate¼ 0.44%), followed by ANTs (failure rate¼ 8.87 %), FSL (failure
rate¼ 11.11%), Elastix Affine (failure rate¼ 12.35%), BestLinReg MI
196
(failure rate¼ 12.74%), BestLinReg XCorr (failure rate¼ 13.03%), Elas-
tix Similarity (failure rate¼ 24.40%), MRITOTAL (failure
rate¼ 27.14%), MRITOTAL ICBM (failure rate¼ 27.41%), and SPM
(failure rate¼ 30.66%).

Table 5 shows the percentage of failures that were common between
each two methods.

Factors affecting performance

MRITOTAL, MRITOTAL ICBM, and Elastix performed significantly
better on 3T scans in the ADNI dataset (p< 0.001, unpaired t-test). The



Fig. 4. Examples of one axial, sagittal, and coronal slices of failed registrations in more detail. Incorrect estimates of a) translation, b) translation and scaling, c) scaling
in all directions, d, e) scaling in axial plane, and f) rotation.

Table 4
Registration error rates. Comparison between the performance of different linear
registration techniques. Data are the percentage of registration failures assessed
by a human expert (i.e., a smaller number shows better performance), across the
different datasets.

Dataset ADNI
1.5T

ADNI
3T

PPMI
1.5T

PPMI
3T

HCP
3T

PREVENT-
AD 3T

MRITOTAL 46.17 35.01 22.97 27.51 7.92 24.86
MRITOTAL
ICBM

45.03 37.40 18.02 26.99 13.27 22.14

BestLinReg
MI

15.36 16.30 7.66 15.68 8.92 12.55

BestLinReg
XCorr

9.03 8.48 14.41 16.20 18.17 11.91

Revised
BestLinReg

0.46 0.69 0.00 0.90 0.11 0.48

FSL 13.01 12.24 14.41 18.38 4.24 4.40
Elastix
Similarity

33.99 28.93 13.96 18.25 28.09 23.18

Elastix Affine 18.40 11.75 11.26 11.31 6.35 2.08
SPM 28.00 25.22 36.94 43.32 49.94 21.74
ANTs 5.33 6.41 35.59 22.37 9.36 11.19
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differences for 1.5T vs 3T for other methods and for the PPMI dataset
were not significant.

Table 6 shows the p values of the permutation tests comparing SNR
and the standard deviation of image intensity non-uniformity estimates
Table 5
Registration failures common between different methods. Data are the Dice Kappa p

Method MRITOTAL MRITOTAL
ICBM

BestLinReg
MI

BestLinReg
XCorr

MRITOTAL – 60.20 21.70 16.97
MRITOTAL ICBM – – 21.34 16.58
BestLinReg MI – – – 25.02
BestLinReg XCorr – – – –

Revised
BestLinReg

– – – –

FSL – – – –

Elastix Similarity – – – –

Elastix Affine – – – –

SPM – – – –

ANTs – – – –
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between the passed and failed registrations. The amount of image non-
uniformity was associated with registration success for all methods
except Elastix Similarity. The SNR level was associated with success for
half the methods tested: MRITOTAL, MRITOTAL ICBM, BestLinReg MI,
Elastix Similarity and SPM.

Table 7 shows the p values of the permutation tests comparing age
and different measures of atrophy related changes between passed and
failed registrations. Interestingly, age affects registration success for all
techniques except Revised BestLinReg (albeit the p value is marginally
significant before correction for multiple comparisons). Larger ventricle
size is associated with registration failures for all methods except Elastix
Similarity and SPM. Brain size adversely affects registration success for
all methods except Elastix. Head size is not associated with registration
failures only for Elastix Similarity and SPM. Finally, the WMH load is
associated with registration failure for all methods except BestLinReg MI,
BestLinReg XCorr and Revised BestLinReg.

Discussion

In brain imaging, linear stereotaxic registration aims to align the
subject’s brain into a standardized space to allow for more comprehen-
sive comparisons of the anatomy and pathologies at the population level.
Such a mapping generally corrects for location, orientation, and overall
size of the brain (3 translation, 3 rotation, and 3 scaling parameters in 3D
transformations). Choosing a registration technique among the various
ercentages of cases that failed for each two registration methods.

Revised
BestLinReg

FSL Elastix
Similarity

Elastix
Affine

SPM ANTs

1.07 19.39 36.35 22.32 45.97 12.23
0.94 19.84 34.89 20.85 45.50 14.78
3.15 24.66 21.17 21.56 24.67 13.10
1.28 20.37 16.35 15.53 17.66 19.68
– 4.88 1.41 5.13 1.42 2.57

– – 18.40 35.41 23.85 15.61
– – – 24.76 41.43 20.25
– – – – 30.37 17.51
– – – – – 26.69
– – – – – –



Table 6
Effect of SNR and NU on registration QC. p values of permutation tests comparing
SNR and intensity non-uniformity measures. SNR¼ Signal to Noise Ratio. NU¼
Intensity Non-uniformity.

Method SNR NU STD

MRITOTAL <0.001 <0.001
MRITOTAL ICBM <0.001 <0.001
BestLinReg MI 0.015 <0.001
BestLinReg XCorr 0.121 <0.001
Revised BestLinReg 0.420 0.014
FSL 0.198 <0.001
Elastix Similarity <0.001 0.158
Elastix Affine 0.040 <0.001
SPM <0.001 <0.001
ANTs 0.159 <0.001

Table 7
Effect of Age, atrophy, brain size and WMH load on registration quality. p values
of permutation tests comparing age and measures of atrophy related changes
between passed and failed registrations. WMH¼ White Matter Hyperintensity.

Method Age Ventricle
Volume

Brain
Volume

Scale
Factor

WMH
Volume

MRITOTAL <0.001 <0.001 <0.001 <0.001 <0.001
MRITOTAL ICBM <0.001 <0.001 <0.001 <0.001 <0.001
BestLinReg MI <0.001 <0.001 <0.001 <0.001 0.240
BestLinReg XCorr 0.006 0.003 <0.001 0.004 0.162
Revised
BestLinReg

0.026 <0.001 0.004 <0.001 0.321

FSL <0.001 <0.001 <0.001 <0.001 0.001
Elastix Similarity <0.001 0.308 0.936 0.303 <0.001
Elastix Affine <0.001 <0.001 0.472 <0.001 <0.001
SPM <0.001 0.502 <0.001 0.501 <0.001
ANTs <0.001 <0.001 <0.001 <0.001 <0.001

M. Dadar et al. NeuroImage 174 (2018) 191–200
tools that are publicly available and widely used is difficult, since there is
no single technique that can handle every brain registration task (regis-
tering different image modalities, acquisition sequences, inter/intra
subject registration). Moreover, comparisons between different tech-
niques should be driven by evaluations on the same datasets, which is
generally not the case. The experiments in this paper were designed to
compare five commonly used publicly available registration tools based
on their performance in registering un-preprocessed native T1-weighted
MRIs of brains aged between 25 and 95 years to an average template of
young healthy brain (the MNI ICBM 152 unbiased non-linear average).

In evaluating registration performance, many comparison studies use
synthetically generated data that is created by applying a set of trans-
formations to the original images to assess the quality of linear regis-
tration techniques (Jenkinson et al., 2002). This greatly simplifies the
problem since it ensures that there would be a perfect match between the
source and target images, which is generally not the case. Here instead,
we register native images to an average template, a task necessary in any
population study, and also needed for many preprocessing and segmen-
tation techniques. The experiments here enable meaningful comparisons
between different registration techniques, since they have been applied
to 1.5T and 3T data from various datasets, two of which contain
multi-site, multi-scanner data. Furthermore, including subjects with a
wide age range (25–95 years) and patients with neurodegenerative dis-
eases from the ADNI and PPMI cohorts enables evaluation of the tech-
niques in the presence of brain changes such as AD- and PD-related
atrophy and vascular disease indicated by white matter abnormalities.
Indeed, our experiments showed that the brain changes caused by aging,
atrophy, andWMHs significantly reduce the accuracy of the registrations.

Our experiments showed that the revised BestLinReg technique had
the best performance among all registration techniques and datasets,
with only 51 registration failures out of 9693 registrations. The MRI-
TOTAL and the standard BestLinReg techniques tend to slightly under-
estimate the scaling parameters when using the cross-correlation
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similarity metric. BestLinReg with mutual information tended to over-
estimate them. Elastix Similarity single scale registrations tended to align
the template in the coronal plane, but were not able to correct for the
front-to-back or top-to-bottom differences in the brains.

The SNR does not appear to have a significant adverse effect on the
performance of BestLinReg XCorr, Revised BestLinReg, FSL or ANTS
techniques. This is likely due to the internal blurring used in these
methods, which generally reduces the effects of noise. Additionally, in-
tensity nonuniformity seems to adversely affect Revised BestLinReg and
Elastix Similarity methods less (albeit this effect is no longer significant
when corrected for multiple comparisons).

Older Age adversely affects registration success for all techniques
(except for Revised BestLinReg, but this no longer holds when correcting
for multiple comparisons). This is likely due to the morphological
changes that are associated with aging, i.e. larger ventricles, grey matter
and white matter atrophy, and white matter hyperintensities. This is
further validated by the fact that ventricle and brain size (both reflecting
atrophy) as well as higher white matter hyperintensity load also seem to
adversely affect registration success. Specifically, in MRITOTAL tech-
niques, the last steps are driven by gradient magnitude, and larger ven-
tricles will have more energy in the objective function, possibly biasing
the transform. Since the target image (MNI ICBM 152 template) is
generated based on healthy young individuals, registration of older
brains with different intensity distributions proves more challenging.
This supports the fact that older subjects need to be registered to an age-
specific or population-specific (e.g. Alzheimer’s disease, Parkinson’s
disease) template for analyzing datasets to reduce the registration failure
caused by these effects. Various groups have attempted to create age-
specific or population specific (e.g. Alzheimer’s disease population)
templates (Dickie et al., 2016; Fillmore et al., 2015), including our group
(Fonov et al., 2009, 2011). All templates are publicly available at (http://
nist.mni.mcgill.ca/?page_id¼714, https://datashare.is.ed.ac.uk/handle/
10283/1957).

The head size (estimated by scaling factor) is not associated with
registration failures for Elastix Similarity, and SPM. MRITOTAL, MRI-
TOTAL ICBM, BestLinReg MI, Revised BestLinReg, and FSL techniques
seem to have more registration failures for larger head sizes, whereas
ANTs seems to have more registration failures for smaller head sizes.

The larger number of available configurations provides the users with
the opportunity to optimize the registrations based on the specific data
set and task of interest. As an example, when dealing with source and
target images that have very different tissue contrasts, using similarity
metrics such as mutual information generally works better than least
squares or correlation metrics. Similarly, if available, one can choose
different optimizers based on time and computational power constraints.
Another important registration parameter that is not always supported is
the type of linear transformation. For example, Elastix, SPM, and ANTs do
not support a 9-parameter registration. Therefore, one has to either opt
for a suboptimal 7-parameter transformation which assumes the same
amount of scaling in all directions, or a 12-parameter transformation
with shearing which warps the shape of geometric figures.

Our study is not without limitations. Not all the available options
were tested for different registration techniques. For FSL FLIRT, and SPM
the default options were used. For Elastix, and ANTs the widely used
mutual information and stochastic gradient descent optimizer options
were selected. This might lead to suboptimal results. However, since one
rarely attempts all the available configurations (especially for Elastix,
which provides 10s of different possible combinations), we tested only
the most commonly used options. Furthermore, HCP dataset had been
defaced prior to the registrations in order to ensure anonymity, while the
other datasets had not (ADNI, PPMI, and PREVENTAD). This face
removal step might affect the performance of some registration tech-
niques more than the others. SPM and BestLinReg XCorr had a poorer
performance on HCP dataset compared with other datasets (Table 4).
However, since HCP also had a higher level of intensity nonuniformity,
it’s not possible to speculate whether this lower performance was caused

http://nist.mni.mcgill.ca/?page_id=714
http://nist.mni.mcgill.ca/?page_id=714
http://nist.mni.mcgill.ca/?page_id=714
https://datashare.is.ed.ac.uk/handle/10283/1957
https://datashare.is.ed.ac.uk/handle/10283/1957
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by the defacing.
Preprocessing the images can have a significant effect in improving

the performance of most registration techniques. As was shown in our
experiments, the signal to noise ratio and image intensity non-uniformity
significantly affected the quality of the registrations for all techniques. To
make the comparisons fair, no preprocessing was performed on the
native images here before the registrations. This decision was also made
based on the fact that many preprocessing techniques need an initial
registration, and a registration method that would be dependent on
preprocessing cannot be used in pipelines that use such preprocessing
techniques.

Linear brain MRI registration to an average template is an ill-posed
problem because the shape and cortical topology of the brain varies
strongly from one individual to another, especially in existence of brain
atrophy. Therefore, intensity-based registration algorithms are expected
to fail at least on some pathological cases. Variabilities in data from
different scanner models and image acquisition sequences further adds to
the complexity of this problem. So far, no general technique is able to
accurately register any two images all of the time. This comparison
provides some insight into the performance of several publicly available
registration tools and facilitates the choice of a registration technique for
a specific application.
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